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Effect of bulk magnetic field on critical Ising films
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Two-dimensional Ising film& X < in a nonvanishing bulk magnetic field are studied at the bulk critical
temperatureT; for two choices of surface field@) H,=H =0 (ordinary transition and(b) H;=H =
(normal transition by the density-matrix renormalization-group method. Universal scaling functions for mag-
netization profiles, the excess magnetizafigrthe longitudinal correlation lengt), and for the analog of the
solvation forcef,, are found and discussed. Whein=0 the scaling function fof ., has two symmetric
minima aty=sgnH)L|H|"*~ + 1 with an amplitude at the minimum about 3.8 times the valug a0, the
Casimir amplitude. For the normal transition the scaling functionffgf, has a single minimum near the
continuation of the pseudocoexisten@apillary condensatignline, with an amplitude about 100 times the
Casimir amplitude.

PACS numbg(s): 05.70.Jk, 64.60.Fr, 68.35.Rh, 68.1%

[. INTRODUCTION surface were given by the theory of a surface critical phe-
nomena[2,3]. However, these predictions were formulated
There are two relevant scaling fields for critical behaviorand tested mainly for the case 8¢, i.e., forH=0.
in Ising magnets: théreduced deviation from the critical In confined systems the finite size, in addition to the sur-
temperaturey=(T—T,)/T. and the bulk magnetic fielth.  face effects, influences criticality leading to the rounding
The Onsager exact solution of a two-dimensiof2d) Ising  and/or the shift of the critical poirf4]. It is expected from
model helped significantly to understand the behavior of systhe theory of a finite-size scaling that the behavior of various
tems shifted away from the critical point aEH=0 by a  thermodynamic quantities should depend sensitively on the
change of the temperature fietd1]. This solution served as ratio £/L, wherelL is a characteristic length of a confined
a test of scaling properties of various thermodynamic quansystem. Again, the finite-size scaling hypothesis was con-
tities near criticality, but it was limited to the case Bf  firmed mostly forH=0, i.e., whenf= ¢, and the role of the
=0. Other techniques, such as series expansions, were d&nagnetic” bulk correlation length in a confined system
veloped to explore the behavior of Ising magnets at nonzeraas not studied.
magnetic field. However, these methods were not always sat- Confined Ising magnets generate a force between the con-
isfactorily accurate and there was a general awareness of tli@ing plates, a “magnetic” analog of the solvation force,
reliability of different conjectures. The lack of the exact so-sometimes called the disjoining pressii¢. For fluids this
lution of the Ising model in nonzero magnetic field makesis the excess pressufever the bulk value fixed by the res-
the properties of an Ising magnet along the critical isothernervoir) arising from confinement and can be measured di-
7=0 not fully explored. The renormalization group theory rectly by the surface force apparatus or atomic-force micro-
predicts that the effect of a change of the scaling fléldt  scopegd6]. In the critical confined system this force becomes
7=0 on a critical system should be analogous to the effect ofong-ranged as a result of critical fluctuations, a phenomenon
a change ofr at H=0 (with different critical exponenjs  which is a direct analog of the well-known “Casimir” effect
However, this prediction was not confirmed by explicit cal- in electromagnetismi7,8]. Contrary to the usual dispersion
culations and many important issues such as the size of tHerces, the critical solvation forcg'Casimir” force) is gov-
scaling region along the=0 axis, or the shapes of scaling erned byuniversalscaling functions. At the critical point the
functions atr=0 were not studied. scaling functions reduce to the universal Casimir amplitudes.
Commonly, the notion of the bulk correlation length is Recently, it was shown that the solvation force has a rich
identified with a “temperature” bulk correlation length, ~ variation as a function of atH=0. For films with identical
=¢(H=0,7)~|7|~" and for many critical phenomena only a surfaces the solvation force is negatiattractive forcg and
role of &, was studied. Consider a critical Ising magnethas a minimum as a function efnot atthe critical point, but
bounded by a surface or confined between two parallefor 7 such thag ~L, whereL is the width of the filn{9,10].
plates. The effects of a surface should extend to a distancEhe magnitude of 5, at this minimum is much bigger than
comparable to the bulk correlation length. Near the bulkat =0, the Casimir amplitude. The behavior of the solva-
critical point & gets macroscopically large and hence thetion force as a function ofl at 7=0 has not been studied so
boundary region affected by the surface becomes macrdar, but if the “magnetic” correlation length manifests itself
scopic. As a consequence the local densities such as tlie a similar way to the “temperature” correlation length, an
order-parametefOP) profile become inhomogenous on a analogous, rich variation of this force witH can be ex-
scale of¢. The detailed predictions for a spatial variation of pected near criticality.
the OP, depending on the type of a surface, and for the scal- In this paper we address some of the above issues by
ing of various thermodynamic quantities in a presence of &xplicit calculations of various thermodynamic quantities in

1063-651X/2000/6(6)/500910)/$15.00 PRE 61 5009 ©2000 The American Physical Society



5010 A. DRZEWINSKI, A. MACIOLEK, AND A. CIACH PRE 61

the 2D Ising film atr=0 and nonzero magnetic field. We  and results for the critical systems bounded by a surface at
use the recently developed, approximate density-matri@nd near ¢<1, H=0) the ordinary and normal transitions
renormalization-grougDMRG) method[11]. Based on the aré rewewed._On the basis _of the scaling ana_lys!s the pred!c-
transfer-matrix approach, the DMRG method provides a verfions concerning the behavior of the OP profile in the semi-
efficient algorithm for the construction of effective transfer infinite system near the normal transitionat 0 andnon-
matrices for thick films(largeL) [12,13 and works equally ~Z€ro Hare formulated. In this paper we concentrate on the
well for vanishing as well as nonvanishing bulk fields. Thebehavior of films for weakd at 7=0. Nevertheless, it is
accuracy of this method proved to be very good for 2D Isinginstructive for the discussion of the results to recall shortly
films at 7=0, H=0, and various surface field44]. critical behavior and the phase diagram of films with firite
Specifically, we consider a 2D Ising magnet defined on'his is done in Sec. 1B for@ H;=0 and (b) H,=c°.
the square lattice. X M, M—. The lattice consists of Section 11 C reviews the finite-size scaling for the free en-
rows at spacingg=1, so that the width of the fim ika  €ray the magnetization profile and the adsorptiercess
=L. At each site, labeled,j, ..., there is an Ising spin magnetizatiop the solvation force and the correlation length
variable taking the valuer;=+1. We assume nearest- parallel to the walls suitable at=0 andnonzerobulk mag-
neighbor interactions of strengthand a Hamiltonian of the NetiC field H. The above quantities and their scaling func-

form: tions were calculated using the DMRG method for the case
of ordinary transition and normal transition, and the results
(1) L) are presented in Secs. Il A and Il B, respectively. A discus-
H=—-1J <Z> oigi—HY, oi—H.> a—H_ Y o], sion of our results is given in Sec. IV.
1] i i i
(1.2
Il. THEORY

where the first sum runs over all nearest-neighbor pairs of The standard scaling expression formear the critical
sites, while the last two sums run, respectively, over the first . ic field i revieyd5)
and thel th row. H is the bulk magnetic field, andH, are point in nonzero magnetic field [see, e.g., a
the surface fields corresponding to direct, short-ratigen- £(rH) =7 "L (H| 7% 2.1)
tact”) interactions between the walls and the spins in the ' = ' '
film. H, H{, andH_ are measured in units df We assume
thatH1= HL>O

The system defined above can serve as a model of

as 7—0~ and H—0. We ignore here metric factors. The
sign =~ indicates that corrections to scaling have been omit-
o . i : . f'éd.Ei are certain scaling functions. As usual, in the above
uniaxial magnet or a binary mixture confined between 'den'expression thet — refer to 70 and 7<0, respectively.

tical parallel plates or walls, or a simple fluid in a slitlike A=B+ryi ; o

) . D = v is the bulk gap exponeng is the critical exponent
pore; the local surface fields model the substrate-fluid mt.eraescribing the vanishing of the bulk OP andis the bulk
%usceptibility exponent. For the 2D Ising modek 15/8,
vy=T7/4, andB=1/8. AtH=0 the scaling function reduces to
the amplitude= . (0) and the bulk correlation length be-
He u— T 1.2 comes, what we called in the Introduction, the “tempera-

~ oo T), .2 ture” bulk correlation length:

the bulk fieldH corresponds to the chemical potential differ-
ence

where u is the chemical potentialor, for binary fluids, - -,
chemical potential differengeof the bulk reservoir with E=ErH=0)~E.(0)|". (2.2
which the film is supposed to communicate, whilg,(T) is . _ . ,
the bulk coexistence curve. A nonzerocorresponds to the 1h€ amp"t“d_e:i(g) for the 2D Ising model is k”_OW” ex-
situation when, for example, the densjtyof the bulk reser- actly [16], i.e., =, (0)=1[2In(1+ V2)] and E_(0)
voir is slightly different thamp., the critical density of a bulk =114 In(1+2)]. _ o
fluid. In this paper we are concerned with the situation when

In this work we focus on two types of surfacds) H, ~ 7=0 butH#0. The suitable form of the scaling fgris then
=0 and(b) Hy=c, which for the 2D Ising model in the ~
semi-infinite geometry define two surface universality E(m,H)~|H| 2B L(JH| Y1), 2.3
classedqa) the ordinary transition, antb) the normal transi-
tion, reprgse_nting an unstable and _stable fixed point of th@vhereét is a new scaling function. At=0 ¢ reduces to
renormahzaﬂon-groyp rovy, respectl\(e[ﬁ]_. These are the o “magnetic” bulk correlation length
only two surface universality classes in this system, since the
boundary is one-dimensional. Ordinary transition is relevant B ~ — A
to magnets and alloys with free surfaces and occurs when the £n=£&(0H)~E-(0)|H| : 2.4
tendency to order in the surface is de-enhanced compared to _
the bulk at zero surface external fidhy. The normal tran- The amplitudeZ .. (0) is known for the 2D Ising model only
sition is the most relevant to fluids surface transition andapproximately. It was obtained from the power-series expan-
occurs when the surface orders as a result of a surface extesion of the spin-pair-correlation functio® for the correla-
nal field H, but with de-enhanced surface interactions. tion length defined as the second moment&f17]. It is

The paper is arranged as follows. Section Il is devoted tequal to 0.233:0.001. To our knowledge the ratio between
the theory where the most relevant for our paper definitionshe amplitude of the second moment correlation length and
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the amplitude of the “true” correlation length, describing takes place in a distance=¢, from the surface. Such a

the exponential decay of the correlation functi@nis not  behavior of the magnetization profile implies that the adsorp-

know for the 2D Ising model. tion I' diverges forr—0* according to the universal power
law [18]

A. Semi-infinite systems B (2.1

In the critical regime thermodynamic quantites are de-
scribed by homogeneous functions of the relevant scaling Consider the case af=0 andH #0. The scaling form of
fields. For systems bounded by a surface in addition to théhe OP profile more suitable for this case is
scaling fieldsr andH there exist relevant scaling fields per- A s A LA L —1
taining to the surface. For the 2D Ising model defined in the m(z2)=H[PAN=(ZH["3,[H[ YA, H ),
Introduction there is a single such scaling field, the surface (212
magnetic fieldH, [3]. The scaling of the OP profile in the

semi-infinite geometry readignoring metric factors where N~ are scaling functions. At=0 Eq.(2.12 reduces

to

m(Z)~|T|'8Mi(Z|T|V,H|T|_A,H1|T|_A1), (2.5 .

&y’
The arguments of the scaling function§, are completely
=1/2 andB=1/8. The scaling variables taken to the appro-anamg_OLIS to the arguments of the scaling fungtion in Eq.
priate power are proportional to the ratio of characteristicgézm'rt]z %I;egrlg(‘:izdnbeygr t.h-(l;hrl{lsr,nt"lr;? tsrgnmseitisld?]a“ro]og [?:raly-
lengths in the systeré._, , andl;~|H,| "1, the length - j
relz?ted 0 the szrfac% Eh 1~ |Hy| 9 formed forH=0 and smali [18] should hold forr=0 and

(a) Ordinary transition.At the critical pointr=H=0 and  Small H. However,H=0 explicitly breaks the symmetry
H,=0 the OP(magnetization profile is zero for any dis- contrary to 7>0 and the shape of the scaling functions
tancez=0 from the surface since the symmetry under the’No /o can be different; foH<0 an interfacelike region
reversalo;— — ; is not broken, neither in a bulk nor in the between the near-surface positively magnetized region and

surface. Accordingly, the excess magnetizatiadsorption =~ Mb<<0 for z—< is formed.
I' defined as

m(z)~|H|ﬁ’AN§( anl). (2.13

where g is the critical exponent describing the vanishing of
the bulk OP and\;=A%" is the surface gap exponei

are universal scaling functions. For the 2D Ising model

B. Critical behavior of films

= f wm(z) dz, (2.6) The critical behavior of systems confined between parallel
plates or walls is modified due to tliembinedeffect of the
finite thicknesd. of the film and the specific surface interac-
wherez is the distance measured normal to the surface, lotions. First, for the Ising film that is of infinite extent th
cated az=0 is equal to zero. —1 dimensions, parallel to the walls, true criticality can oc-
(b) Normal transition.For H, =« the magnetizatiom(z) cur providedd—1=2—the lower critical dimension of the
takes the valuen,;=1 at the surface and then decays to thecorresponding bulk system. Criticality for finitelies in the
bulk equilibrium value being zero fafF=T,. From the scal- universality class of the buld—1 system. Second, the loca-
ing law for the OP profile one can read off the form of this tion of the critical point crucially depends on the type of
decay at criticality[18]. At H=0 and|r|<1 the general surfaces.
scaling form of the magnetizatioi2.5) reduces to (@ Hy=H_=0. In films with free boundaries the Ising
symmetry requires two-phase coexistence to hd-=a0 and

P z it is known that ford=3 and large but finitd, a line of
m(z)~7"Mo g_r’frlll - (2.7 coexistence extends to the critical temperafligbl)<T.,.
The expression for the shift follows from the finite-size scal-
Accordingly, ing [4]:
= _ ~_ | —1lv Aqlv
T~ 78¢,Go(£,11). 2.9 Are=[Te(L,Hy) = Tel/ Tem =L~ X (HyL ) 14

These formulas refer to>0. At 7=0 andH=0 the decay where the scaling functioX.(w) reduces to the amplitude
of the magnetizatiorm(z) to the bulk equilibrium value x (0) for H,=0.

m* =0 is described by (b) Hy;=H_=. For anyH,,H >0 the entire phase
By boundary in the T,H) plane is displaced into the half-plane
m(z)~z 7" Mo(2/11) (29 H<0 with a positive slope. Thécapillary) critical point of

. . the film lies belowT. and is shifted inH as well as in
with Moc(¢) approaching a constant f@r—. In the 2D temperature. The expression for the temperature shift is

Ising modelB/v=1/8. Whenr#0 andH=0 a crossover to given by Eq.(2.14 and the similar form holds forH,
the exponential decay =H,(L,H,) [20]:

m(z)~ exp(—2z/¢;) (2.10 AH o~ — LAY (H,L% /). (2.15
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The simple interpretation of the resy®.14 states that the m(z)~|H|B’AM§(Z|H|”’A;y,x). (2.20
growth of droplets within the film is determined by bulklike
fluctuations until, at the shifted critical poir,(L), the  For films the adsorptiofr is defined as in E¢(2.6) but with
droplet size is comparable with the smallest film dimensionthe upper limit of an integration equal ta The 7 depen-
i.e.,L~&~[T,—T(L)] " The analogous argument can be dence of the adsorption for films with nonzery in zero
formulated to interpret the resul.15 for the shift of the  bulk field differs from that in semi-infinite systems. Consider
critical field. the case when the bulk critical temperature is approached
For the 2D Ising film of finiteL the situation is similar.  from above. ThenI” first increases but whei ~L it starts
Although there can be no true phase transition for fiite to saturate at a positive value, which depends on the width of
there is still a line of sharpvery weakly roundepitransitions  the film L and on the value of the surface fiett,. We will
(ending in a pseudocritical poinf21]. The thermodynamic be investigating thél dependence df at 7=0. In particu-

quantities such as the free energy and the magnetization dgyr, we will be testing the scaling df which follows from
pend smoothly on temperature, surface, and bulk fields. Thgq. (2.20:

singularities of the free energy, specific heat, etc. are rounded

forming maxima. Folf <T, the maximum of the free energy D~|H|-VAG(y,x)~L A" 1G (y,x), (2.20)
f(H) at fixed T, L, and H,; can be identified with the

pseudocoexistence fielt.,(L). The pseudocritical point WhereG andG, are scaling functions.

(T(L),H¢(L)) cannot be found from the maxima of the free ~ The transfer-matrix approach gives a way of defining the
energy as they are present even Tor T, [22]. The pseud- longitudinal spin-spin correlation leng) of a finite system.
ocritical point can be defined, for example, as a position of df we take the transfer matrix in the infinite dimension then
maximum of a specific heat along the pseudocoexistence 1

line. The scaling properties of the free-energy maximum at § (7, HiLHy) == In[A1/Ao]. (222

T=T¢, HnadT¢,L;H;) for the model considered here were )
studiéd inmlgef[gz]. It svas found that . T.,L;H,) scales HereA, andA are the largest and the second largest eigen-

in the same way adH, in Eq. (2.1, and that the scaling values of the transfer matrix. F@[l a method similar to the
c .(2.15, . : .
function is, as expected, equal to 0 185 =0 and saturates free-energy scaling ansatz hol@gnoring metric factors

for largeH ;. Lg“*l(T,H;L,H1)~K(L1’V7,y,x) (2.23

C. Finite-size scaling with the appropriate universal scaling function

In this paper we want to test the scaling properties of<(L""7.y,x). When r=0H=0 the universal amplitude
various thermodynamic quantities &0 and nonzero bulk K(0,0x) is identified from the relation_ ¢ *(0,0;L,H,)
field. For finite-size systems it has been recognizgdhat  ~K(0,0x). The universal amplitudes established from the
the system sizel “scales” with the correlation length correlation length defined by the exponential decay of the
£(7,H) of the bulk system. Thus the scaling hypothesis forspin-spin correlation function alongL < strip are

the singular part of the free energy per spin is K(0,0,0)=/2 for free boundary conditions arng(0,0)
§ / =2 for fixed boundary conditiongl6].
fs(L;T.HH)~L WL 7,y,x), (2.16 The free energy per site of the 2D Ising film with two

surface fieldH,=H, can be written for largé as
(ignoring metric factorswhere

f(L,T,Hy)=F,+2f,/L+f*(L)/L, (2.29
y=sgr(H)L[H|" (2.17
where fy, is the bulk free energyf,, is the L-independent
and surface contribution from each wall, afd is the finite-size
correction to the free energy. The latter vanishesLferoc.
X=L[Hy|"%1. (2.18  such a term gives rise to the generalized force, which is

analogous to the solvation force between the plates in con-
For H=0, exact calculations for the 2D Ising model con- fined fluids[5]

firmed Eq.(2.16 for H;=0 [23] as well as forH,;#0 [24].
We will evaluate the scaling functioW,(y,x)=W(0,y,x) at fsow=—(F*/IL)y 7 1, (2.29
7=0.

We will be also concerned with the order-parameter pro+or films with identical surface fieldsl;=H, foon(L)<O,
file m(z) and the excess magnetizatidh For the model e the net force between the confining plates is attractive.
(1.1) the profile is defined as From the general theory of critical finite-size scalij it

follows that the solvation force should scale as
m(z)~m=(o)), z~la=l, (2.19
fson~L 2F(LY¥7,y,%). (2.26

where o, denotes a typical spin in th&h row (with |
=1,2,...L) corresponding to a perpendicular distarce At fixed pointst=0, H=0 andH;=0 orH;=<x the scaling
(0=z=L) from the first wall. The profiles, likewise, obey function F reduces toF(0,0,0)=A4,kgT. or F(0,0:)
scaling[18,24]. We will be testing the form of the scaling =.A.kgT., where Ay and . A.. are universal, the so-called,
suitable atr=0 Casimir amplitudes. For the 2D Ising model,.=Ay=
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—/48. fg,, and its scaling function were evaluated and
analyzed in a wide range of the variallé”r for x=02°
andy=0 in Ref.[10]. For x= and for a giverL the sol-
vation force has its minimurabovethe critical temperature.
The amplitude of the force at the minimum is about 6.6 times
the Casimir amplitude. The minimum of the scaling function
F(LY7,00) occurs when the film width.~2.2 times the
bulk correlation length ¢.. It was also found that
F(LY7,000)=F(—LY"7,0,0) which confirms that the Ca-
simir amplitudes for free boundaries is the same asHor
=00, However, the minimum of the solvation force for the
case of free boundaries occuyslow T .

Scaling of the free energy, magnetization profile and ad-
sorption, solvation force, and the correlation length will be
tested atr=0 in two casesa) H;=0, i.e.,x=0 and(b) H;
large so that the scaling variabte>1.

IlIl. DMRG RESULTS

In our calculations we have used the finite-system version
of the DMRG algorithm designed to perform accurate stud- 08, 50 100 150 200
ies for finite-size systemfgl2]. For more details see Ref. z
[13]. FIG. 1. (a) Log-log plot of the modulus of the surface magneti-
Calculations were perfp_rmed for films of widthbetween zation |m1|(&(l)starg ar?dpthe modulus of the magnetization |gr]1 the
24 and 200 at the bulk critical temperature 0 and for bulk  center of the film|m, .| (circles versus the modulus of the bulk
magnetic field ranging frontH=0 to 1. We consider two magnetic fieldH for the 2D Ising film of widthL=200 at the
cases of surface fieldd;=H, : critical temperaturél=T, andH,;=0. (b) Magnetization profiles
m, for the 2D Ising film of widthL=200 atT=T,, H;=H_ =0
and several values of the bulk field: the top profile corresponds to
A.H1=H_ =0 H=—10®, then subsequently from the next to the top to the bot-
For free boundary conditions the Ising symmetry holds atom  profile:  H=-10"°%-1.1x10"*—1.3x10 % —0.001,
H=0 thus the sign of the applied bulk field is not relevant —0.01. H is in units of the coupling constadt z is in units of the
for the behavior of the system. In our calculations we haveattice constant, the magnetizetion is dimensionless.
chosenH < 0. After swiching on the negative bulk magnetic
field at =0 the OP, vanishing everywhere in the system at
=0 andH =0, becomes negative and inhomogenous acros
the film. One can distinguish three characteristic regimes o |

From the behavior of the scaling function of the inverse of
e longitudinal correlation lengt§y shown in Fig. 3, it fol-
ws that in this regime is proportional to the width of a
m L and does not depend add. The scaling function

behavior: ) .
K(0y,0)~K(0,0,0)==/2 for |y|<0.8, in agreement with
1. Surface-governed regime (linear response) the results from the conformal invariangs].
For the weakestH such that§H>L the magnetization 2. Crossover regime

responds linearly to the applied field the wholesystem. .
This can be seen from the log-log plot of the modulus of the For stronger values df such tha§H~ L the adsqrptlorf .
magnetization at the surfaden;| and the modulus of the and ¢, exhibit a crossover to a different behavior. In this
magnetization at the midpoirim, | as a function of|H|
calculated for fixed. =200 (see Fig. 1 For|H|<5x107° ' N
the straight line in Fig. 1 with a high accuracy has a slope ™
equal to 1. Magnetization profiles in this regime are almost . | -
flat with a slight difference between the value of magnetiza- = /
tion at the surface and in the middle part of the film. The >

adsorptionI” is small and negative but its absolute value O
increases fairly rapidly witiH|. The linear dependence of

the magnetization profile oA implies the linear dependence

of the adsorption ofd. Such behavior can be read off from 10*
the scaling functiorG(y,0) of I' for |y|<1. Figure 2 shows 10 vl
that the scaling given by Eq2.21) is excellent up tgy| y

~100. This log-log plot of G(y,0)| is a stright line for]y| FIG. 2. Log-log plot of the modulus of the scaling function
<0.8. We checked that with a good accuracy the slope ofG(y,0)| [obtained using Eq2.21)] of the adsorptiod™ calculated
this line is equal to *(A—pB)/v=275, hencel  for 2D Ising films atT=T,, H;=H_ =0, and several widths:
~sgnH)[H|B= /A y| A=A, = 100 (circles, 124 (squarey 150 (diamonds.
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10° r . 0.0 T T
B
01 | .
= 1 y=-1.12 g
-0.2 = 1
s , : %s x=0 §
> aal
gw 1 ! . 03 1 1
X - W 04t ]
£ =
j -05 1
= a®
10007 10° 10 10° 0.6 1 )
Iyl 07} a
FIG. 3. Log-log plot of the scaling functioli(0,y,0) [obtained 0.8 \ .
using Eq.(2.23] of the inverse of the longitudinal spin-spin corre- 0.0 05 . 1.0
lation length of finite systeng calculated for 2D Ising films at zIHI
=T., H;=H_ =0, and several widthst = 100 (circles, 124
(squareys 150 (diamonds. o1k |
crossover regime profiles become highly inhomogenous =-5.02
across the filnfsee middle two profiles in Fig.()]. 0.3 g X= ¢
3. Bulk field-governed regime v, 05 f% s A
For even strongeH such thatéy<L, the OP profiles E A §
become flat in the middle part of a film. The magnetization 0.7 r ]
of a bulklike phase formed inside the film satisfies the bulk
critical isotherm relation, i.em~sgni)|H|*® with 6=15 09 | 1
for the 2D Ising model. Indeed, the log-log plot of b
|m | (|H]) in Fig. 1(a) is a straight line with a slope equal to PR . . . . :
1/15 for [H|>3x 10 *. From the log-log plot ofm,|(|H|) 00 10 20 30 40 50
in the same figure it is seen that the magnetization at the z|HI

surfacem; behaves in this regime as predicted from the

theory of the surface critical phenomena for the semi-infinite(
; - 18 _ _ ;

sys_tem, |._e.,m1 sgn(H)|H| 7 7=0H =0H—0 with %557 4 theb) “critical behavior” regime fory= —5.02 for

61=A/p,=15/4 for the 2D Ising modell2]. To our knowl- 2D Ising films atT=T,, surface fieldsH,=H =0, and several

edge this is the first confirmation of this prediction for sys- iqihs:L = 100 (circles, 124 (squarel 150 (diamonds.
tems of 2D Ising universality class. The scaling function of

the adsorptior" is a linear function ofly| for |y|=3 (see . .
Fig. 2. This means tha ~|H| 6~ /2y ~sgnH)[H|#/AL so from f(L) calculated from the leading eigenvalue of the ef-

: L : : . fective transfer matrix. To obtain a perfect scaling of our
that a good estimate for the adsorption in this regimé&' is ; o
wm(H)gL Wherem(H)nganWR is the magnegzation data we had to su.bstract in adgjltlon the te_rm 1.3232(5)
in the middle part of a film. Alsd./§ becomes a linear +Q'5947;5)./L’ which probaply 'S thg nonsingular term
function of|y| for |y|=8, which means thalt/ &~ L/ & . If “hidden” in integrals. The scaling functiolV.(y,0) has, as

we identi with in this regime we can estimate the expected, a mgximum &t=0: )
fy € & 9 In order to find the solvation force at=T, we first cal-

amplitudeE _(0) of the “magnetic”~correlation lengthty culate the excess free energy per unit af&4L)=[f(L)
[see Eq(2.4)]. Our rough estimate i€ _(0)~0.3847). —fp]L [see Eq.(2.29)], wheref(L) is the free energy per
We checked that the scaling of profiles as defined by Egspin of the whole system anfg is the bulk free energy per
(2.20 is excellent in all three regimes. In Fig. 4 we presentspin. Again,f, is not known exactly for the 2D Ising model
scaling functions of typical profiles in the crossover and criti-at T=T, and the nonzero bulk field so we have to evaluate it
cal behavior regimes. To check the scaling of the singulanumerically. We perform calculations of the free energy for
part of the free energy we have to substract the nonsinguldiims with widths up toL=300. Next we extrapolate the
part f . from the free energy of the whole system. We as-bulk free energy using a powerful extrapolation technique,
sume following Privmaim19] thatf . does not depend on the the Bulirsch and Stoer method and o we obtain the
bulk field H and hence it should be the same as in the case ofaluef,, for eachH. As a test of the correctness of the result
the 2D lIsing film in zero bulk magnetic field. The exact we check theH dependence of the obtaindg. At T=T,
formulas for the free energy per spin of the 2D Ising film my(H)~ sgnH)|H|Y? for H—0. As af(T,H)/dH=m, it
with two arbitrary surface field$d,,H, (H,H >0) atH  follows thatf,(H,T.)=fo+.A/(1/6+ 1)|H|¥*1 for H—0,
=0 were given in the Appendix of Ref24] [formulas wherefy is a free energy per spin for bulk system in vanish-
(A14)—(A17)]. These formulas consist of parts which areing H. Our result forf,, shows a very good agreement with
explicitly nonsingular and integrals. We sét=T. andH,;  the above equation withA=—0.9399(1) for |[H|=5
=H_=0 in explicitly nonsingular parts and substract themx 10 4. The deviation from the power function &f takes

FIG. 4. Scaling functions of typical magnetization profiles in the
a) crossover regime for the scaling varialyle: sgnH)L|H|"*=
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0.20 ' ' ' ' the exact profile of the limiting case— [14] . To obtain
000 i scaling of the singular part of the free energy per dpiwe
’ s @ proceeded in the same way as for =0 case, but this
S 02078, a" ] time for eachL we put into exact formulas of Ref24] a
;3 ] @ suitable value ofH; such that the scaling variabbe was
L 040 QJ 1 equal to 20 000. Again a perfect scaling of our data is found
& after substracting from the free energy of the whole system
oe0 the nonsingular part, as in the case of the ordinary transition,
-0.80 . s s . with an additional term 1.3232(%)2.839(0)/L.
0o 10 20 iyl 80 40 50 The case of the normal transition is more complicated due

to the shift of the phase coexistence from Hhe 0 line. The
FIG. 5. Scaling function of the solvation forde(0y,0) [Eq.  presence of surface field$;=H  breaks the symmetry and

(2.26)] calculated for 2D Ising films aT=T,, surface fieldsH, leads to the nonvanishing OP profile everratO,H=0. The
=H_=0, and several widthd:= 100 (circles, 124(squares 150  OP profile, positive everywhere at=0 andH=0, is driven
(diamonds. towards negative values by negative, decreasing bulk mag-

netic field. Contrary to the case of free boundary conditions
place in the linear-response regime whége>L. Itis clear the magnetization at the surfagg remains equal to 1 for all
then that to obtain the bulklike behavior in this regime onestudied values oH between 0 and -1. The shapes of the
has to go to much wider films. As the accuracyfgfis the  magnetization profiles for varioud, and theH dependence
worst in this regime we expect the lowest accuracy of theof I'/L at T=T, for H;=H,=0.8 andL =98 were presented

results for the solvation force in this regime. in Ref.[25] where the “critical depletion” phenomenon was
Having valuesf®(Ly+2) and f®(L,) we approximate studied. Our results for differerit and H, agree with the
the derivative in Eq(2.25 by a finite difference findings of Ref[25], hence we present here only the scaling
functions for the profiles and the adsorption. Again we can
fson=— (L[ F(Lo+2)—F(Lo)]. (3.)  distinguish three regimes of behavior.
We calculatedf,,, as a function ofH for variousL. The 1. Surface-governed regime (positive adsorption)
solvation force is attractive for all values éf we studied. For the weakH, such that|ly|<2, the OP is positive

For givenL, fs,,/kgT, approaches the value (m/48)L 2 throughout the film. Except near the walls the profiles are
asH—0, where— /48 s the Casimir amplitude. Whehl| 1ot flat, similarly to the case f,=0. The adsorptiof
grows, fso), exhibits a sharp minimum located at a smalljs positive and its value decreases-abecomes more nega-
(less than 0.0 L-dependent value off and then rapidly iye We found that althougim, ;, changes linearly witi in
increases to zero. We restricted our calculations to the Sehis regime,m; and the magnetization at a few other points
L=24,50,74,100,124,150 as for wider films the most inter a4y the surfaces do not change at all. Consequentlyi, the
esting behavior offs,,, i.e., the region around the mini- yoeg not depend oH linearly, contrary to the case of free
mum, is located aH for which thezaccuracy of our calcula- hondary conditions. The scaling function of the adsorption
tion is the worst. In Fig. 5 we pldt“X fg,, as a function of G(y,>)~y for |y|<2, which means that the adsorption is a
the scaling variabldy|. Generally, scaling is very good. |inear function of the width of the filni and very weakly
Only in the linear-response regimgy|<1, can one see depends orH, i.e., T ~sgnH)L|H|~¥5 This saturation is
slight deviations from the common curve which can be €X-geen in a plot of the modulus of the scaling function

plained by the not sufficient accuracy of our calculations.GL(y’zo 000) in Fig. 6. Notice that the saturation regime is

The minimum of the solvation force is located in the Cross-yider than the linear-response regime of the chse=0.

over regime. It is reached for the scaling varialig  The saturation regime extends up fg~2 whereas the
~112, i.e., wherL~2.88,~1.8 [assuming the ampli- jinear-response regime endswit~0.8. Similarly to the case
tude = _(0) of the “magnetic” correlation lengtlt, is ap-  of free boundary conditions the scaling function of 1gatu-
proximately equal to~0.38§7)]. At the minimum the ab- rates asy—0. K(0,y,20000) becomes almost constant for
solute value ofF(0y,0)/kgT., where F is the scaling |y|<0.3 which means that the longitudinal correlation length
function of the solvation force is approximately 3.8 times the¢ of finite system is proportional ta in this regime and
Casimir amplitude4,=F(0,0,0)kgT.. We found that, as does not depend oH. We checked that with a good accu-
expectedF (0,y,0) is an even function of. This means that racy the amplitudé(0,0,20 000) is equal to2, the value at
the solvation force has two symmetric minima—one locatedk= [16].

at someH ,,;;>>0 and the second at H ;-

2. Crossover regime

B.Hi=H == The behavior of studied quantities in this regime is far
Our DMRG calculations were performed for films of more rich for the normal transition than for the ordinary tran-
widths between 100 and 200 and for variddg, such that sition. Just like for theH,;=0 case the crossover regime is
the scaling variablec~L/l;=L|H,|*/*1~20000. From our characterized by highly inhomogenous profiles across the
previous studies of 2D Ising films at vanishing bulk magneticfilm. Shapes of profiles and accordingly the adsorption
field it follows that for the above value of the magnetiza- change very rapidly in a narrow interval &f. At |y|~4.2
tion profile is almost saturated and coincides very well withthe adsorptiod’=0 and for greately| it becomes negative.
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FIG. 8. Solvation forcdin units of the coupling constad) as a
function of the bulk magnetic fieldh (in units ofJ) for the critical
(T=T,) 2D Ising films of widthsL between 100 and 200. Calcu-
lations for eachL were performed at the suitable value of surface
fieldsH,;=H, to meet the conditiox=L|H,|"*1=20 000.

FIG. 6. Modulus of the scaling functio@, (y,20 000)[obtained
using Eq.(2.21)] of the adsorptiod” calculated for 2D lIsing films
at T=T, and different widths:L =100 (starg, 124 (circleg, 150
(squares 174 (diamond$, and 200 (triangles. Calculations for
eachL were performed at the suitable value of surface figtds
=H, to meet the conditiom=L|H,|**1=20000. The logarithmic
scale is used to expose the saturatiorj@f(y,20 000) for small  magnetization in the middle of the film satisfies the bulk
values ofy. critical relation:my ;,~ sgn(H)|H|*°. L/&| becomes a linear

function ofy for |y|=10 with the same slope as in the case
Unlike in the H;=0 case, the scaling function of g/  of H;=0. This confirms our identification ofj with £y in
K (0y,20000), and the scaling function of the singular partthis regime.
of the free energy per spify, W,(y,20000), show a non- The solvation force was calculated in the same way as for
trivial variation in this regimeK(0,y,20000), presented in the case of free boundary_ cor_lditions. Results for films with
Fig. 7, exhibits a minimum &ty|~3.6. W.(y,20000) has a different L are presented in Fig. 8., is negative for all
maximum aty~4.2. As described in Sec. I B the maxima of studied values oH and varies with the bulk magnetic field
the free energy for temperatures beldw can be identified ~Similarly to the case off; =0, i.e., it decreases rapidly when
with the pseudocoexistence line of two pseudo phases. Thud decreases below zero, takes on a minimum value at some
the maximum ofW,(y,20 000) atT=T, lies at the continu- Hmin(L) and then increases to zero. The striking feature of
ation of this line beyond the psuedocritical point. Notice thatthe behavior of the solvation force is that the minimum for
at the same value ofthe adsorptiod” is equal to zero. This the case of the normal transition is approximately two orders
is consistent with the thermodynamics as the derivative oPf magnitude deeper than for the case of the ordinary transi-
the free energy of the whole system with respedt @t fixed ~ tion. For example, fot. =100 the value of 5, at the mini-

temperature is equal to a mean magnetizatiom a system MM is for the ordinary transition approg(i.mat_ely equal to
and?‘— LR a g y —5.8x10 > whereas for the normal transition it s — 1.4

x 103, Also for the case of strong surface fields the loca-
tion of the minimumH,,,;,(L) for fixed L is further away
from zero than for the case &f;=0. Thus, for the current
For sufficiently strong bulk magnetic field a bulklike case ofk=20000 we could perform calculations with a good
phase forms inside the film and the OP profiles become flaaccuracy for wider filmgup to L =200) than for the case of
in the middle part of the film. We found that foy|>10 the ~ x=0. From Fig. 8 it follows that for weak corresponding
to the saturation regime the solvation force is a linear func-
& , . tion of the bulk magnetic field. Moreover, results for differ-
® ent L form a common stright line as though the solvation
& force would not depend on the width of the film in this range
of H. Indeed, the scaling form of the solvation force implies
g that if fqo,~H then the scaling functior(0,y,20 000)
1 should behave as-|y|*’” and theL dependence of the sol-
& 88 omy g vation force isf,,~L 974", For 2D this is a very weak
"Vl dependence as the exponent is equat @125. In Fig. 9 we
plot L?X f¢,, as a function of the scaling variablg| and
1o , , obtain an excellent scaling. The minimum of the solvation
10° 10’ 10 force is located in the crossover regime, close to the extrema
Iyl of the free energy and the longitudinal correlation length. It

FIG. 7. Log-log plot of the scaling functiok(0y,20 000)[ob- IS reached for the scaling varlatjlye|~3.2. Dge to the bro- '
tained using Eq(2.23] of the inverse of the longitudinal spin-spin K&n symmetry by the surface fields there is no symmetric
correlation length of finite systed) calculated for 2D Ising films at  Minimum of the solvation force for the positivé. At the
T=T, and several widthsL=100 (star, 124 (circles, 150  Minimum F(0y,20 000)kgT, is approximately 10Qtimes
(squarel 174 (diamond$, and 200 (triangle3. Calculations for  the Casimir amplitudeA.,
eachL were performed at the suitable value of surface figids The location of the minimum of the solvation force seems
=H, to meet the conditiox=L|H,|*41=20 000. to be governed by since at the minimurh~2.7¢ . Recall

3. Bulk field-governed regime (negative adsorption)

K(0,y,20000)
=
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FIG. 9. Scaling function of the solvation forde(0,y,20 000) 20
[Eqg. (2.26)] calculated for 2D lIsing films at =T, of widths L=
100 (starg, 124 (circles, 150 (squares 174 (diamond$, and 200
(triangles. Calculations for each were performed at the suitable
value of surface fieldsH,;=H, to meet the conditionx
=L|H,|"21=20000.
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that in the crossover regimg differs significantly froméy, .
Similarly to the case of free boundary conditions the mini-
mum of the solvation force is associated with highly inho-
mogenous profilésee Fig. 10

£(H) for H around its maximum is much bigger than the
corresponding bulk magnetic correlation length due to a
presence of broad interfaces between thin layers of a liquid-
like phase near walls and a gaslike phase in the middle of the
film in a crossover regime. As is visible in Fig. 10, the scal-
ing functions of the magnetization profile are linear in the
region of the interface.

From the above analysis it follows that in our finite sys-
tem one cannot check predictions described in Sec. Il A con-
cerning the universal behavior of the profile and of the ad- 20 . . . .
sorption in the semi-infinite system moved away from the 00 20 Al w0 B0 100
bulk critical point by the bulk fieldH. Recall that in films at
H=0 and nonzere when one can find a temperature regime FIG. 10. Scaling functions of typical magnetization profiles for
such that, <L andT behaves as in the semi-infinite system, 2D Ising films atT=T, in the crossover regime for the scaling
i.e., according to the universal Fisher de Gennes power laWariable(@ y= sgnH)L|H|"*=—3.2, i.e., at the minimum of the
(2.11) [26]. For the present case wheh becomes strong soIvapon forcg(b) y=—4‘f‘.2, at t.he maximum ,(,)f thel free energy of
enough to meet the conditios,<L, the vicinity of the the film and in the(c) “bulk field-governed” regime, fory=
pseudocoexistence manifests itself and the OP profile ig 802 Calculations for each were performed at the sitable
modified. Thus for films the scaling fieldsandH are not \iall_LfF_' |<3)‘Als_u2rfoaggo fieldsH,=H, to meet the conditionx
thermodynamically equivalent in the critical regime. I '

3.0 4.0 5.0

0.0 1.0 2.0 1
1A
zIHI”

20

T
* L=100

mIHI*

influences strongly the system evenTat. For both the or-
IV. DISCUSSION dinary and the normal transitions we observe the crossover
between the surface-governed behavior and the bulk field-
In this paper we have undertaken the investigation of thgyoverned behavior ad becomes more negative. The cross-
effect of the bulk magnetic field on the ordinary and normalover in the case of the ordinary transition occurs when the
transitions in two-dimensional Ising films. Our results arepulk correlation lengthé,~|H|~*2~L, whereas for the
restricted to the bulk critical temperatuiie, to study the normal transition it occurs wheg~L, which is near the
dependence of physical quantities Binand to explore the continuation of the pseudocoexistence line beyond the capil-
equivalence of the scaling field$ and 7. Our results con- lary condensation pseudocritical poifig(L). In the case of
firm general finite-size scaling predictions in the case whenhe ordinary transition the surface-governed behavior re-
the bulk magnetic correlation leng#, sets the length scale. sembles the behavior of the disordered phase, since the
For quantities such as the adsorptibnor the longitudinal ~ whole OP profile responds linearly to the bulk fiéldIn the
correlation lengthé; the scaling region is very broad, up to case of the normal transition the strong surface field
y=sgnH)L|H|"*~—100. breaks the symmetry and the surface-governed behavior re-
We found that for the ordinary transition a&=0 andH sembles the behavior of the positively magnetized
<0 a dominant length in the systemds, equivalently ta, pseudophase with'>0. In both cases the strortg in the
in the case oH=0 and=>0. The case of the normal tran- bulk field-governed regime stabilizes the negatively magne-
sition is very different due to the proximity of the quasi-first- tized pseudophase in the central part of the film Wit 0
order capillary condensation phase transition beTowhich  andm(L/2)~sgnH)|H|Y.
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We observed that in the crossover region the physicalude of the force(in units of kgT,.) is approximately 100
guantities exhibit extrema, as for example the solvatiortimesthe Casimir amplitude. The minimum of the solvation
force, or inflection points, as for example, adsorption. Alsoforce lies close to the continuation of the pseudocoexistence
the OP profile is highly nonuniform everywhere across thdine beyond the capillary condensation pseudocritical point
film. In other systems with the relevant length scales deterT (L), hence, we connect this strong effect with the proxim-
mined by 7 or by the surface fielH,, &~|7|~” or I, ity of the quasi-first-order capillary condensation phase tran-
~|H,| ~""41, respectively, similar crossover behavior charac-sition belowT,.
terized by nonuniform OP and extrema or inflection points of
thsig}al quantities was observed whe&n~L or [;~L ACKNOWLEDGMENTS
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